155 research outputs found

    Approximation of Frequency Queries by Means of Free-Sets

    Full text link

    Quantitative and Ordinal Association Rules Mining (QAR Mining)

    Full text link
    Abstract. Association rules have exhibited an excellent ability to identify interesting association relationships among a set of binary variables describing huge amount of transactions. Although the rules can be relatively easily generalized to other variable types, the generalization can result in a computationally expensive algorithm generating a prohibitive number of redundant rules of little significance. This danger especially applies to quantitative and ordinal variables. This paper presents and verifies an alternative approach to the quantitative and ordinal association rule mining. In this approach, quantitative or ordinal variables are not immediately transformed into a set of binary variables. Instead, it applies simple arithmetic operations in order to construct the cedents and searches for areas of increased association which are finally decomposed into conjunctions of literals. This scenario outputs rules that do not syntactically differentiate from classical association rules

    An automatic critical care urine meter

    Get PDF
    Nowadays patients admitted to critical care units have most of their physiological parameters measured automatically by sophisticated commercial monitoring devices. More often than not, these devices supervise whether the values of the parameters they measure lie within a pre-established range, and issue warning of deviations from this range by triggering alarms. The automation of measuring and supervising tasks not only discharges the healthcare staff of a considerable workload but also avoids human errors in these repetitive and monotonous tasks. Arguably, the most relevant physiological parameter that is still measured and supervised manually by critical care unit staff is urine output (UO). In this paper we present a patent-pending device that provides continuous and accurate measurements of patient’s UO. The device uses capacitive sensors to take continuous measurements of the height of the column of liquid accumulated in two chambers that make up a plastic container. The first chamber, where the urine inputs, has a small volume. Once it has been filled it overflows into a second bigger chamber. The first chamber provides accurate UO measures of patients whose UO has to be closely supervised, while the second one avoids the need for frequent interventions by the nursing staff to empty the containe

    Big data analytics — A review of data-mining models for small and medium enterprises in the transportation sector.

    Get PDF
    The need for small and medium enterprises (SMEs) to adopt data analytics has reached a critical point, given the surge of data implied by the advancement of technology. Despite data mining (DM) being widely used in the transportation sector, it is staggering to note that there are minimal research case studies being done on the application of DM by SMEs, specifically in the transportation sector. From the extensive review conducted, the three most common DM models used by large enterprises in the transportation sector are identified, namely “Knowledge Discovery in Database,” “Sample, Explore, Modify, Model and Assess” (SEMMA), and “CRoss Industry Standard Process for Data Mining” (CRISP-DM). The same finding was revealed in the SMEs’ context across the various industries. It was also uncovered that among the three models, CRISP-DM had been widely applied commercially. However, despite CRISP-DM being the de facto DM model in practice, a study carried out to assess the strengths and weakness of the models reveals that they have several limitations with respect to SMEs. This paper concludes that there is a critical need for a novel model to be developed in order to cater to the SMEs’ prerequisite, especially so in the transportation sector context

    Intelligent mining of large-scale bio-data: bioinformatics applications

    Get PDF
    Today, there is a collection of a tremendous amount of bio-data because of the computerized applications worldwide. Therefore, scholars have been encouraged to develop effective methods to extract the hidden knowledge in these data. Consequently, a challenging and valuable area for research in artificial intelligence has been created. Bioinformatics creates heuristic approaches and complex algorithms using artificial intelligence and information technology in order to solve biological problems. Intelligent implication of the data can accelerate biological knowledge discovery. Data mining, as biology intelligence, attempts to find reliable, new, useful and meaningful patterns in huge amounts of data. Hence, there is a high potential to raise the interaction between artificial intelligence and bio-data mining. The present paper argues how artificial intelligence can assist bio-data analysis and gives an up-to-date review of different applications of bio-data mining. It also highlights some future perspectives of data mining in bioinformatics that can inspire further developments of data mining instruments. Important and new techniques are critically discussed for intelligent knowledge discovery of different types of row datasets with applicable examples in human, plant and animal sciences. Finally, a broad perception of this hot topic in data science is given
    corecore